F1_MEAN_ACC_X <= 0.0108261 | F3_MEAN_ACC_Z <= -0.123901: fanmian (50.0) | F3_MEAN_ACC_Z > -0.123901: jingzhi (25.0) F1_MEAN_ACC_X > 0.0108261 | F3_MEAN_ACC_Z <= 0.00497055: daoli (57.0) | F3_MEAN_ACC_Z > 0.00497055: touzhi (25.0) Number of Leaves: 4 Size of the tree: 7 Classes: => daoli, fanmian, jingzhi, touzhi Features: => F1_MEAN_ACC_X, F2_MEAN_ACC_Y, F3_MEAN_ACC_Z, F4_MEAN_ACC_V2, F5_VARIANCE_ACC_V2, F6_VARIANCE_GYR_V2, F7_ENERGY_GYR_X, F8_ENERGY_GYR_Y, F9_ENERGY_GYR_Z, F10_ENERGY_GYR_V2, F11_PEAK_TO_PEAK_ACC_V2, F12_PEAK_TO_PEAK_GYR_V2 ========================== Cross-Validation: 5 fold/s ========================== Accuracy iter 1: 100.00 % Accuracy iter 2: 100.00 % Accuracy iter 3: 93.75 % Accuracy iter 4: 97.22 % Accuracy iter 5: 96.67 % Average accuracy: 97.53 % Std dev accuracy: 2.34 % =============== Whole data training with Confidence Factor: 0.00 =============== Confusion Matrix: daoli fanmian jingzhi touzhi <-- classified as daoli 57 0 0 0 fanmian 0 50 0 0 jingzhi 0 0 25 0 touzhi 0 0 0 25 Total Number of Instances: 157 Correctly Classified Instances: 157 Incorrectly Classified Instances: 0 Accuracy: 100.00 % Cohen's kappa: 28.39 % Report: precision recall support daoli 1.00 1.00 57 fanmian 1.00 1.00 50 jingzhi 1.00 1.00 25 touzhi 1.00 1.00 25 avg/total 1.00 1.00 157